Various low-latency anonymous communication systems such as Tor and Anonymizer have been designed to provide anonymity service for users. In order to hide the communication of users, most of the anonymity systems pack the application data into equal-sized cells. Via extensive experiments on Tor, we found that the size of IP packets in the Tor network can be very dynamic because a cell is an application concept and the IP layer may repack cells. Based on this finding, we investigate a new cell-counting-based attack against Tor, which allows the attacker to confirm anonymous communication relationship among users very quickly. In this attack, by marginally varying the number of cells in the target traffic at the malicious exit onion router, the attacker can embed a secret signal into the variation of cell counter of the target traffic. The embedded signal will be carried along with the target traffic and arrive at the malicious entry onion router. Then, an accomplice of the attacker at themalicious entry onion router will detect the embedded signal based on the received cells and confirm the communication relationship among users. We have implemented this attack against Tor, and our experimental data validate its feasibility and effectiveness. There are several unique features of this attack. First, this attack is highly efficient and can confirm very short communication sessions with only tens of cells. Second, this attack is effective, and its detection rate approaches 100% with a very low false positive rate. Third, it is possible to implement the attack in a way that appears to be very difficult for honest participants to detect.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Various low-latency anonymous communication systems such as Tor and Anonymizer have been designed to provide anonymity service for users. In order to hide the communication of users, most of the anonymity systems pack the application data into equal-sized cells. Via extensive experiments on Tor, we found that the size of IP packets in the Tor network can be very dynamic because a cell is an application concept and the IP layer may repack cells. Based on this finding, we investigate a new cell-counting-based attack against Tor, which allows the attacker to confirm anonymous communication relationship among users very quickly. In this attack, by marginally varying the number of cells in the target traffic at the malicious exit onion router, the attacker can embed a secret signal into the variation of cell counter of the target traffic. The embedded signal will be carried along with the target traffic and arrive at the malicious entry onion router. Then, an accomplice of the attacker at themalicious entry onion router will detect the embedded signal based on the received cells and confirm the communication relationship among users. We have implemented this attack against Tor, and our experimental data validate its feasibility and effectiveness. There are several unique features of this attack. First, this attack is highly efficient and can confirm very short communication sessions with only tens of cells. Second, this attack is effective, and its detection rate approaches 100% with a very low false positive rate. Third, it is possible to implement the attack in a way that appears to be very difficult for honest participants to detect.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cooperative networking is known to have significant potential in increasing network capacity and transmission reliability. Although there have been extensive studies on applying cooperative networking in multi-hop ad hoc networks, most works are limited to the basic three-node relay scheme and single-antenna systems. These two limitations are interconnected and both are due to a limited theoretical understanding of the optimal power allocation structure in MIMO cooperative networks (MIMO-CN). In this paper, we study the structural properties of the optimal power allocation in MIMO-CN with per-node power constraints. More specifically, we show that the optimal power allocations at the source and each relay follow a matching structure in MIMO-CN. This result generalizes the power allocation result under the basic three-node setting to the multi-relay setting, for which the optimal power allocation structure has been heretofore unknown. We further quantify the performance gain due to cooperative relay and establish a connection between cooperative relay and pure relay. Finally, based on these structural insights, we reduce the MIMO-CN rate maximization problem to an equivalent scalar formulation. We then propose a global optimization method to solve this simplified
and equivalent problem.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cooperative networking is known to have significant potential in increasing network capacity and transmission reliability. Although there have been extensive studies on applying cooperative networking in multi-hop ad hoc networks, most works are limited to the basic three-node relay scheme and single-antenna systems. These two limitations are interconnected and both are due to a limited theoretical understanding of the optimal power allocation structure in MIMO cooperative networks (MIMO-CN). In this paper, we study the structural properties of the optimal power allocation in MIMO-CN with per-node power constraints. More specifically, we show that the optimal power allocations at the source and each relay follow a matching structure in MIMO-CN. This result generalizes the power allocation result under the basic three-node setting to the multi-relay setting, for which the optimal power allocation structure has been heretofore unknown. We further quantify the performance gain due to cooperative relay and establish a connection between cooperative relay and pure relay. Finally, based on these structural insights, we reduce the MIMO-CN rate maximization problem to an equivalent scalar formulation. We then propose a global optimization method to solve this simplified
and equivalent problem.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users’ physical possession of their outsourced data, which inevitably poses new
security risks toward the correctness of the data in cloud. In order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper a flexible distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. The proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the identification of misbehaving server. Considering the cloud data are dynamic in nature, the proposed design further supports secure and efficient dynamic operations on outsourced data, including block modification, deletion, and append. Analysis shows the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users’ physical possession of their outsourced data, which inevitably poses new
security risks toward the correctness of the data in cloud. In order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper a flexible distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. The proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the identification of misbehaving server. Considering the cloud data are dynamic in nature, the proposed design further supports secure and efficient dynamic operations on outsourced data, including block modification, deletion, and append. Analysis shows the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cooperative communication has received tremendous interest for wireless networks. Most existing works on cooperative communications are focused on link-level physical layer issues. Consequently, the impacts of cooperative communications on network-level upper layer issues, such as topology control, routing and network capacity, are largely ignored. In this article, we propose a Capacity-Optimized Cooperative (COCO) topology control scheme to improve the network capacity in MANETs by jointly considering both upper layer network capacity and physical layer cooperative communications. Through simulations, we show that physical layer cooperative communications have significant impacts on the network capacity, and the proposed topology control scheme can substantially improve the network capacity in MANETs with cooperative communications.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Cooperative communication has received tremendous interest for wireless networks. Most existing works on cooperative communications are focused on link-level physical layer issues. Consequently, the impacts of cooperative communications on network-level upper layer issues, such as topology control, routing and network capacity, are largely ignored. In this article, we propose a Capacity-Optimized Cooperative (COCO) topology control scheme to improve the network capacity in MANETs by jointly considering both upper layer network capacity and physical layer cooperative communications. Through simulations, we show that physical layer cooperative communications have significant impacts on the network capacity, and the proposed topology control scheme can substantially improve the network capacity in MANETs with cooperative communications.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted servers. To achieve fine-grained and scalable data access control for PHRs, we leverage attribute based encryption (ABE) techniques to encrypt each patient’s PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multi-authority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented which show the security, scalability and efficiency of our proposed scheme.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted servers. To achieve fine-grained and scalable data access control for PHRs, we leverage attribute based encryption (ABE) techniques to encrypt each patient’s PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multi-authority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented which show the security, scalability and efficiency of our proposed scheme.
Notice: After Clicking, Please wait and click SKIP, Download Starts.
We are here to share the content we have, In this site we are going to share Some IEEE Paper Implementations with their Source code and Documents. Hope it may be usefull for some Students Searching for....
Join Us @ Facebook